5 research outputs found

    Characterizing traits of coordination

    Full text link
    How can one recognize coordination languages and technologies? As this report shows, the common approach that contrasts coordination with computation is intellectually unsound: depending on the selected understanding of the word "computation", it either captures too many or too few programming languages. Instead, we argue for objective criteria that can be used to evaluate how well programming technologies offer coordination services. Of the various criteria commonly used in this community, we are able to isolate three that are strongly characterizing: black-box componentization, which we had identified previously, but also interface extensibility and customizability of run-time optimization goals. These criteria are well matched by Intel's Concurrent Collections and AstraKahn, and also by OpenCL, POSIX and VMWare ESX.Comment: 11 pages, 3 table

    The essence of component-based design and coordination

    Full text link
    Is there a characteristic of coordination languages that makes them qualitatively different from general programming languages and deserves special academic attention? This report proposes a nuanced answer in three parts. The first part highlights that coordination languages are the means by which composite software applications can be specified using components that are only available separately, or later in time, via standard interfacing mechanisms. The second part highlights that most currently used languages provide mechanisms to use externally provided components, and thus exhibit some elements of coordination. However not all do, and the availability of an external interface thus forms an objective and qualitative criterion that distinguishes coordination. The third part argues that despite the qualitative difference, the segregation of academic attention away from general language design and implementation has non-obvious cost trade-offs.Comment: 8 pages, 2 figures, 3 table

    Optimizing for confidence - Costs and opportunities at the frontier between abstraction and reality

    Full text link
    Is there a relationship between computing costs and the confidence people place in the behavior of computing systems? What are the tuning knobs one can use to optimize systems for human confidence instead of correctness in purely abstract models? This report explores these questions by reviewing the mechanisms by which people build confidence in the match between the physical world behavior of machines and their abstract intuition of this behavior according to models or programming language semantics. We highlight in particular that a bottom-up approach relies on arbitrary trust in the accuracy of I/O devices, and that there exists clear cost trade-offs in the use of I/O devices in computing systems. We also show various methods which alleviate the need to trust I/O devices arbitrarily and instead build confidence incrementally "from the outside" by considering systems as black box entities. We highlight cases where these approaches can reach a given confidence level at a lower cost than bottom-up approaches.Comment: 11 pages, 1 figur

    Machines are benchmarked by code, not algorithms

    Full text link
    This article highlights how small modifications to either the source code of a benchmark program or the compilation options may impact its behavior on a specific machine. It argues that for evaluating machines, benchmark providers and users be careful to ensure reproducibility of results based on the machine code actually running on the hardware and not just source code. The article uses color to grayscale conversion of digital images as a running example.Comment: 34 pages, 11 figures, 11 listings, 17 table
    corecore